Abstract
The present work develops and substantiates three differently
extensive versions of a general power function: pow1, pow2 and
pow3. Whilst the first only defines
powers with positive exponents, the second additionally defines
powers of zero with positive exponent, as well as powers with
negative base and integral exponent. The third version exceeds the
former ones and additionally defines powers with negative base and
rational exponent that can be written as a fraction with odd
denominator.
Interval extensions as well as reverse interval operations are
defined and presented for all three versions.
To act as a reference, a Matlab implementation is given, which
uses the wellknown interval arithmetic library INTLAB.
Update: Since INTLAB is no longer available free of charge, the
implemented functions have been migrated to Octave and are included
in the free interval package. The new versions contain several bugfixes
and improvements, e. g., they are faster (vectorized) and more
accurate.
References
- Averbukh, Boris, and Heino Günther. 2008. “Über die
Potenzen und die Potenzfunktionen.” Mathematikinformation
49:5–23.
- “Bemerkungen zu dem Aufsatze überschrieben ,Beweis der
Gleichung 00 = 1 nach J. F. Pfaff,’ im zweiten Hefte
dieses Bandes, S. 134.” 1834. Journal für die reine
und angewandte Mathematik 12:292–294.
- Benson, Donald C. 1999. The Moment of Proof: Mathematical
Epiphanies. New York: Oxford University Press.
- Birkhoff, Garrett, and Saunders Mac Lane. 1965. A Survey
of Modern Algebra. 3rd ed. New York: Macmillan.
- Borůvka, O. 1976. Foundations of the Theory of Groupoids
and Groups. Translated by Milada Borůvkova. Basel:
Birkhäuser.
- Cauchy, M. Augustin-Louis. 1821. Cours d’Analyse de
l’Ècole Royale Polytechnique. 2nd ser., vol. 3 of Œuvres
complètes d’Augustin Cauchy. Paris: Gauthier-Villars et
fils, 1882–1974.
- Chiriaev, Dmitri, and G. William Walster. 1998. “Interval
Arithmetic Specification.” Revised draft.
- Gordon, Daniel M. 1998. “A Survey on Fast Exponentiation
Methods.” Journal of Algorithms 27:129–146. doi:10.1006/jagm.1997.0913.
- Hart, William L. 1938. College Algebra. Rev. ed.
Boston: D. C. Heath.
- Hayes, Brian. 2003. “A Lucid Interval.” American
Scientist, November–December. doi:10.1511/2003.6.484.
- Hayes, Nate, and Arnold Neumaier. 2009. “Exception Handling
for Interval Arithmetic.” Submitted October 13. http://grouper.ieee.org/groups/1788/private/Motions/Motion8.02.pdf.
- Hille, Einar. 1964. Vol. 1 of Analysis. A Blaisdell
Book in the Pure and Applied Sciences, edited by George
Springer. New York: Blaisdell.
- Hille, Einar, and Ralph S. Phillips. 1957. Functional
Analysis and Semi-Groups. Vol. 31 of American
Mathematical Society Colloquium Publications. Rev. ed.
Providence, RI: American Mathematical Society.
- IEEE. 2008. “IEEE Standard for Floating-Point Arithmetic.” doi:10.1109/IEEESTD.2008.4610935.
- ISO/IEC JTC1/SC22/WG14. 1998. “N843.” Committee draft. http://www.open-std.org/jtc1/sc22/wg14/www/docs/n843.htm.
- ISO/IEC JTC1/SC22/WG14. 2003. “Rationale for International
Standard—Programming Languages—C.” Revision 5.10. http://www.open-std.org/jtc1/sc22/wg14/www/C99RationaleV5.10.pdf.
- ISO/IEC JTC1/SC22/WG14. 2007. “N1256.” Committee draft. http://www.open-std.org/jtc1/sc22/wg14/www/docs/n1256.pdf.
- Knuth, Donald E. 1992. “Two Notes on Notation.” The
American Mathematical Monthly 99, no. 5 (May): 403–422.
- Krämer, Walter, U. Kulisch, and R. Lohner. 1994.
“Numerical Toolbox for Verified Computing II: Advanced Numerical
Problems.” Draft version. http://www2.math.uni-wuppertal.de/~xsc/literatur/tb2.pdf.
- Krämer, Walter, and Jürgen Wolff von Gudenberg.
2003. “Extended Interval Power Function.” Reliable
Computing 9:339–347. doi:10.1023/A:1025175029490.
- Lauter, Christoph Quirin, and Florent de Dinechin. 2009. “The
Power Function.” In CR-LIBM: A Library of Correctly Rounded
Elementary Functions on Double-precision. http://lipforge.ens-lyon.fr/frs/download.php/153/crlibm-1.0beta3.pdf.
- Lauter, Christoph Quirin, and Vincent Lefèvre. 2007.
“An Efficient Rounding Boundary Test for pow(x,y) in Double
Precision.” Research Report. École Normale
Supérieure de Lyon. oai:prunel.ccsd.cnrs.fr:ensl-00169409.
- Libri, Guillaume. 1833. “Mémoire sur les fonctions
discontinues.” Journal für die reine und angewandte
Mathematik 10:303–316.
- MathWorks. 2010. “MathWorks Documentation, R2010b,” s.v.
“Power,” “Array Power.” http://www.mathworks.com/help/techdoc/ref/power.html.
- Möbius, A. F. 1834. “Beweis der Gleichung 00 =
1, nach J. F. Pfaff.” Journal für die reine und
angewandte Mathematik 12:134–136.
- Nehmeier, Marco. 2010. “Motion 11.01: Basic Reverse Interval
Operations.” Submitted January 18. http://grouper.ieee.org/groups/1788/private/Motions/motion11v01.pdf.
- Nehmeier, Marco, and Jürgen Wolff von Gudenberg. 2010.
“Motion 21.2: Interval Comparisons and Lattice Operations Based
on the Interval Overlapping Relation.” Submitted October 31. http://grouper.ieee.org/groups/1788/PositionPapers/overlapping.pdf.
- Neumaier, Arnold. 1990. Interval Methods for Systems of
Equations. Encyclopedia of Mathematics and its
Applications. Cambridge: Cambridge University Press.
- Neumaier, Arnold. 2008. “Vienna Proposal for Interval
Standardization.” http://www.mat.univie.ac.at/~neum/ms/1788.pdf.
- Oracle. 2010. “Java Platform, Standard Edition 6: API
Specification,” s.v. “Class Math,” “Pow.” http://download.oracle.com/javase/6/docs/api/java/lang/Math.html#pow(double,double).
- Pryce, John D., ed. 2011. “Level 1 Description.” In P1788:
IEEE Standard for Interval Arithmetic. Draft version 03.1. http://grouper.ieee.org/groups/1788/email/pdfZcfIK2EbS6.pdf.
- Pryce, John D., and G. F. Corliss. 2006. “Interval Arithmetic
with Containment Sets.” Computing 78, no. 3:251–276. doi:10.1007/s00607-006-0180-4.
- Rexx Language Association. 1995. “ANSI J18-199X: Programming
Language REXX.” Final draft. http://www.rexxla.org/rexxlang/standards/j18pub.zip.
- Rump, S. M. 1999. “INTLAB: INTerval LABoratory.” In Developments
in Reliable Computing, 77–104. Edited by Tibor Csendes.
Dordrecht: Kluwer Academic.
- Spiegel, Murray R. 1974. Schaum’s Outline of Theory and
Problems of Advanced Calculus. Schaum’s Outline Series.
SI (metric) ed. New York: McGraw-Hill.
- “Sur la valeur de 00.” 1834. Journal für
die reine und angewandte Mathematik 11:272–273.
- Texas Instruments. 2008. “Knowledge Base,” s.v. “15629,”
“Fractional Powers on Graphing Calculators Where X < 0.” http://epsstore.ti.com/OA_HTML/csksxvm.jsp?nSetId=76014.
- Truss, J. K. 1997. Foundations of Mathematical Analysis.
Oxford Science Publications. Oxford: Clarendon Press.
- van der Waerden, B. L. 1966. Vol. 1 of Modern Algebra.
Translated by Fred Blum. 6th print. ed. New York: Frederick
Ungar.
- Vinner, Shlomo. 1977. “The Concept of Exponentiation at the
Undergraduate Level and the Definitional Approach.” Educational
Studies in Mathematics 8, no. 1:17–26.
- Wallace, D. A. R. 1998. Groups, Rings and Fields.
Springer Undergraduate Mathematics Series. London: Springer.
- Wolff von Gudenberg, Jürgen. 2009. “Motion 10v2:
Elementary Functions.” Submitted October 13. http://grouper.ieee.org/groups/1788/private/Motions/motion10-functionsv22.pdf
and http://grouper.ieee.org/groups/1788/private/Motions/motion10-functionsv2ratio.pdf.
- Wolfram. 2010. “Wolfram Mathematica Documentation Center,”
s.v. “Power.” http://reference.wolfram.com/mathematica/ref/Power.html.
- Wussing, Hans. 2007. The Genesis of the Abstract Group
Concept: A Contribution to the History of the Origin of
Abstract Group Theory. Translated by Abe Shenitzer,
edited by Hardy Grant. Mineola, NY: Dover. First published 1984
by MIT Press.